

HCPCB Technology Guide

Taiyo Kogyo Co., Ltd.

Thick Copper PCB

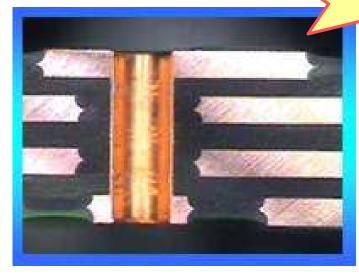
High Current

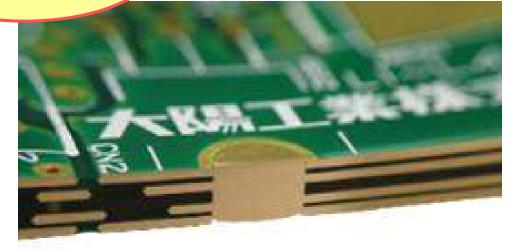
Heat Dissipation

- Copper foil thickness: 3oz / 4oz / 5oz / 6oz / 6.8oz
- Number of Layers: 2-16Layers (*depending on copper foil thickness)
- Board thickness: 0.023"-0.137" (0.6-3.5 mm)
- Available: IVH / To combine with less than 2oz copper is available.
- UL: Certified **N**

10Layers IVH All layers 3oz Board thickness 0.102" (2.6mm)

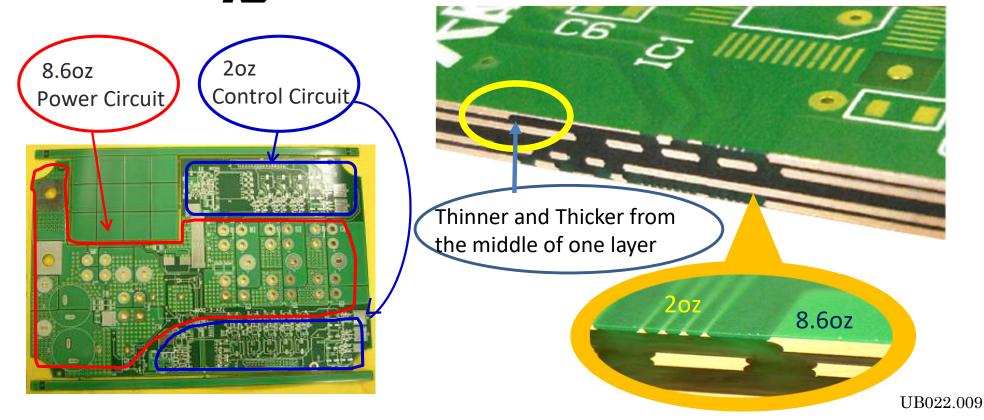
Ultra Thick Copper PCB


High Current


Heat Dissipation

- Copper foil thickness: 8.6oz / 11.4oz / 14.3oz (using rolled copper foil)
- Number of Layers: 2-6Layers (*depending on copper foil thickness)
- Board thickness: 0.051"-0.137" (1.3-3.5 mm)
- Available: IVH / To combine with less than 6.8oz copper is available.
- UL : Certified

All layer 14.3oz Board thickness 0.125" (3.2mm)

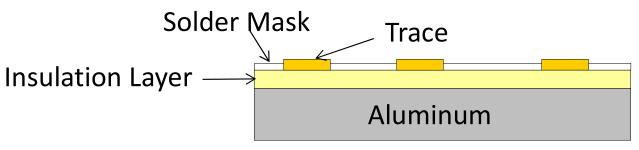


Combination PCB

High Current

Heat Dissipation

- Copper foil thickness: 8.6oz & 2oz copper on the very same layer
- Number of Layers: 2- 6 Layers
- Board thickness: 0.051"-0.137" (1.3 3.5 mm)
- Available: IVH / To combine less than 11.4oz, 14.3oz and 6.8oz copper is available.
- UL: Certified



Aluminum Base PCB

High Current

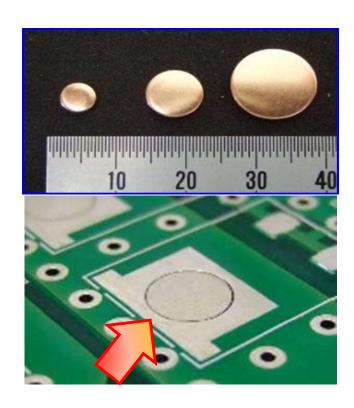
Heat Dissipation

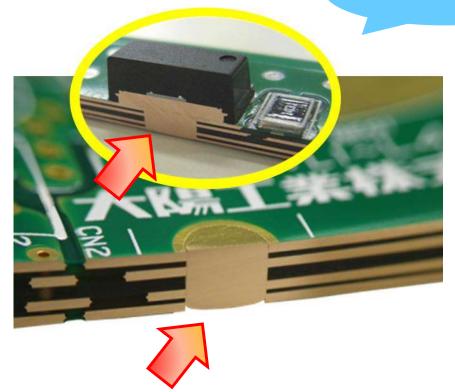
Aluminum Base PCB is a typical Heat Dissipation PCB where copper trace is pasted on Aluminum.

This PCB can handle High Current in addition to High Heat Dissipation functionality by using copper

foil thickness of max. 14.3oz.

	Thermal	Copper foil	Insulation	Aluminum	Minimum	Minimum
	conductivity	thickness	thickness	thickness	Line	Space
	[W/mK]	[oz]	$[\mu{\sf m}]$	[mm]	[inch]	[inch]
1	1.5	1.0	80	1.0	0.006	0.006
2	1.5	1.0	80	1.5	0.006	0.006
3	1.5	2.0	120	1.0	0.008	0.008
4	3.0	1.0	120	1.5	0.006	0.006
5	3.0	3.0	120	1.0	0.012	0.012
6	3.0	5.7	100	2.0	0.018	0.018
7	3.0	14.3	100	2.0	0.039	0.039

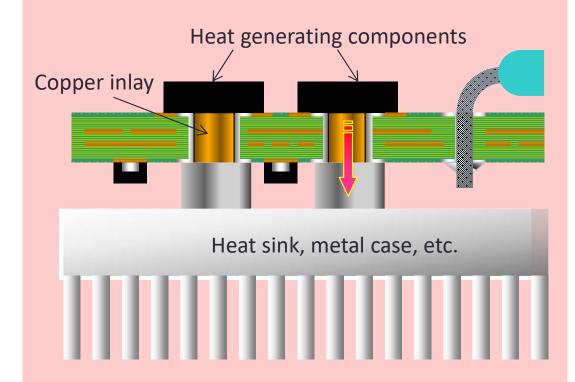




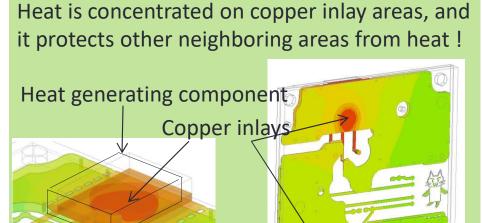
Copper Inlay PCB (Heat dissipation PCB for Power device)

Pure copper chips(copper inlays) are pressed in direct under heat generating components on the board. Copper inlays transfer heat from the surface layer to the other side of the board.

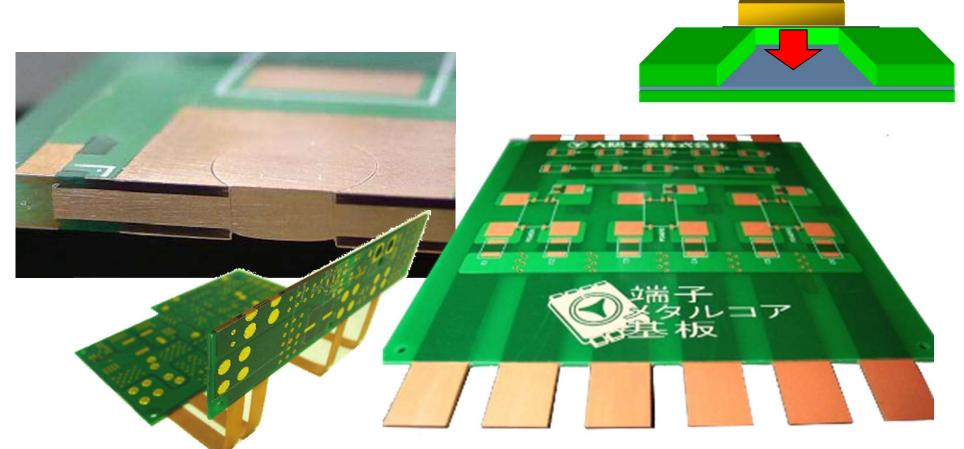
Heat Dissipation


Realize highly efficient heat dissipation for power device such as SiC and GaN

Copper Inlay PCB


- Available for all copper foil thickness
- Diameters of inlay: 0.118"/0.157"/0.196"/0.236" (3 / 4 / 5 / 6 mm)

*High-efficient heat dissipation with heat sink or metal case as heat sink in the bottom.

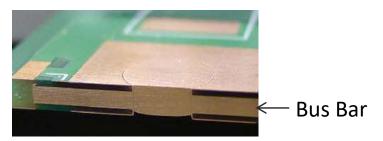

Bus Bar Embedded PCB

High Current

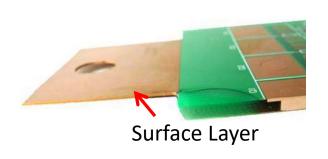
Heat Dissipation

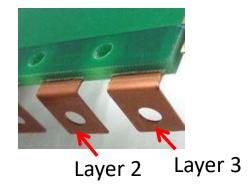
Instead of using etching process to make traces,

14.3oz. or heavier Bus-Bar is made with rolled copper foils by metal fabrication, and it can be embedded in the PCB.

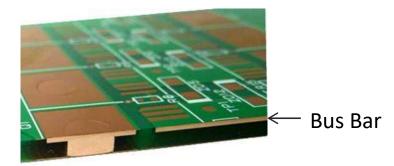


Bus Bar Embedded PCB


High Current


Heat Dissipation

- Bus Bar thickness: 14.3 / 22.8 / 28.5 / 57.1 oz.
- ✓ Embedding Bus Bar into Inner layer



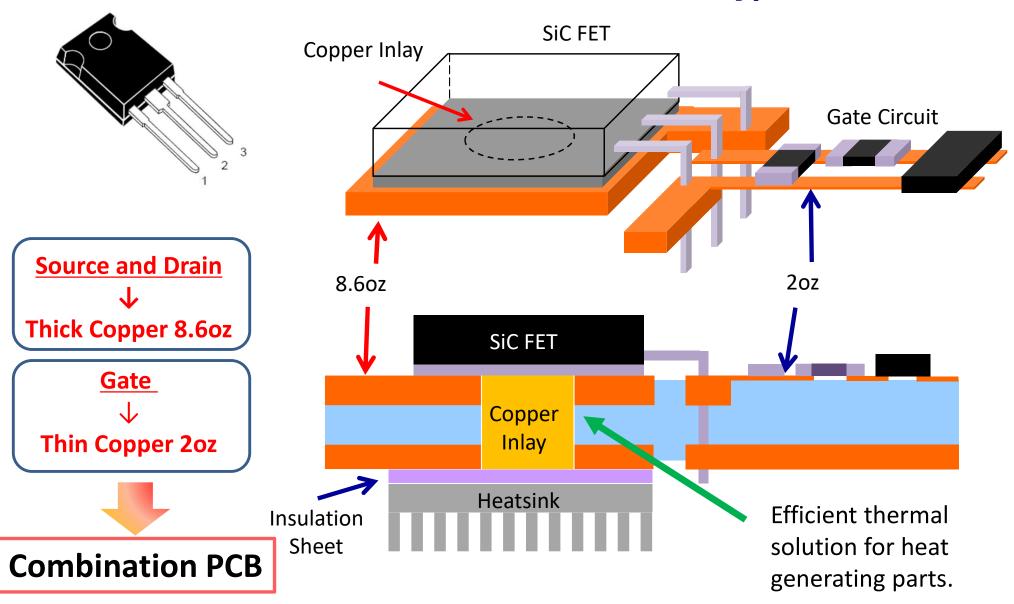
✓ Extracting copper and bending copper terminal

Embedding Bus Bar into External Layer

✓ The shape of Bus Bar is flexible.

Selecting optimum copper foil thickness and designing conductive traces.

For above designing, "what is allowable temperature rise?" is an important factor.


Select optimum copper foil thickness and design conductive patterns based on actual data chart.

	ual data for Ha wable tempe			alue for	"Signal t	race wid	lth" and	"Copper	foil thic	kness" based on each
	The example	is based	d on allo	wable te	mperatu	ire rise o	f 30 deg	rees C (∠	$1t = 30^{\circ}$	E)
Trace Width (inch)	race Width	Copper foil thickness (oz.)								
	(inch)	0.5	1	2	3	4	5	6	6.8	We have data for: - Temperature rise: 10 - 100°C
	0.031	0.84	1.43	1.84	2.14	2.28	2.39	2.48	2.55	Copper foil thickness 0.5 - 14.3c Trace width 0.031" - 2.362"
	0.035	0.94	1.59	2.06	2.36	2.51	2.63	2.73	2.80	(0.8~60mm)
	0.039	1.04	1.75	2.27	2.53	2.84	3.14	3.45	3.71	 Handling current value (A)

We can provide optimum PCB according to customer's requirement specs.

Value of Combination & Copper Inlay PCB - DIP type SiC device

Company Profile

Company Name: TAIYO KOGYO CO., LTD.

Head Office : Tokyo, Japan

Established: August 15th, 1947

Employees : 322 as of March 31, 2024

Business field : To design and manufacture

Printed Circuit Board (Conventional PCB,

High Current PCB, Heat Dissipation PCB)

*Sheet metal processing / Painting / Punching Die etc.

• ISO-9001 : Date of Acquisition: June, 1997

• ISO-14001: Date of Acquisition: March, 2004

UL : E44308 Listed

Main Facilities

- Automatic Imaging Machine
- AOI (Automated Optical Inspection)
- Mat Surface Treatment Line
- Press Machines
- NC Drilling Machines
- Copper Plating Line
- Etching Lines
- Soldermask Spray Coating
- Soldermask Curtain Coating Line
- Silk legend printing machines
- NC Router machines
- OSP Treatment Line
- Flying Probe Testers
- Custom-made Electrical Testers
- Copper Inlay Auto Press Machine

and more...

Taiyo Kogyo Co., Ltd.

↓Please visit our website.↓

https://www.taiyo-technologies.jp/solution/pcb-en

<For Global Contact>

Taiyo Kogyo Co., Ltd.

Tokyo, Japan

m-izumi@taiyo-technology.jp

Tel: +81-3-5436-1871

<For USA Contact>

Taiyo Kogyo US Liaison Office

Spencer Simons

ssimons@taiyo-technology.com

Tel: 508-654-1065

